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Abstract: The assessment of stroke risk and mortality, the second leading global cause of death, is of paramount importance. 

Stroke prediction is a vital pursuit due to its multifactorial nature, involving variables like age, sex, gender, hypertension, BMI 

and heart disease, which introduce considerable complexity. These diverse factors often lead to substantial uncertainty in stroke 

prediction models. Our research delves into the evaluation of two distinct methodologies for quantifying this uncertainty: 

Bayesian and classical quantiles. Bayesian quantiles are calculated from the posterior distribution of a Bayesian logistic 

regression model, accounting for prior information and spatial correlations. In contrast, classical quantiles are based on the 

assumption that stroke probabilities conform to a normal distribution. The results reveal that, across all coefficients, the Bayesian 

model produces narrower intervals compared to the classical model, indicating higher accuracy and confidence. Hence, we 

conclude that Bayesian quantiles outperform classical quantiles in the context of stroke prediction in Kenya. We recommend 

their adoption in future research and applications, acknowledging their superior performance and reliability in enhancing stroke 

prediction models, ultimately contributing to improved public health outcomes. This research represents a significant step 

towards a better understanding and management of stroke risks and mortality on a global scale. 

Keywords: Bayesian Quantile Regression, Classical Quantile Regression, Potential Scale Reduction Factor,  

Markov Chain Monte Carlo 

 

1. Introduction 

In sub-Saharan Africa, stroke is one of the main causes of 

mortality and disability, with Kenya being one of the 

worst-affected nations. Evidence on the epidemiology, 

treatment, and consequences of stroke in Kenya, as well as the 

risk factors connected to various quantiles of the stroke 

distribution, are, however, lacking. It is essential to create 

statistical models that can account for the complexity and 

variability of stroke data in order to give insights into 

preventative and intervention measures. 

Utilizing classical and Bayesian binary quantile regression 

models, which can calculate the effects of variables on various 

quantiles of the binary answer variable, is one strategy that is 

plausible. Additionally, accounting for asymmetric and 

heavy-tailed error distributions, binary quantile regression 

models are suited for binary results, such as the occurrence or 

survival of strokes. While Bayesian binary quantile regression 

models are based on maximizing a likelihood function with an 

asymmetric Laplace distribution, classical binary quantile 

regression models are based on minimizing a check function. 

To cope with high dimensional and collinear variables, these 

strategies can further use regularization techniques, such as 

lasso or bridge penalties. The objective here is to model the 

risk factors of stroke disease in Kenya using Classical and 

Bayesian binary quantile regression. 

BQR has been applied to stroke prediction in different 

contexts, such as South Africa, China, and Brazil. BQR can 

identify and quantify the effects of modifiable and 

non-modifiable risk factors for stroke, such as age, gender, 

hypertension, diabetes, smoking, obesity, and heart problems. 
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BQR can also estimate the direct and indirect costs of stroke 

at different quantiles, which can inform health policy and 

resource allocation. BQR can provide a richer and more 

flexible analysis of stroke prediction than CQR, and offer 

insights into the heterogeneity and variability of stroke 

outcomes. 

A statistics approach dubbed classical quantile regression 

extends the idea of conditional mean regression to conditional 

quantile functions. In comparison to the standard least squares 

approach, it allows for the estimation of the effects of 

covariates on various percentiles of the response variable and 

offers a more thorough and reliable analysis. [11], who 

devised the linear quantile regression model and its 

asymptotic features, introduced classical quantile regression. 

In the Bayesian quantile regression (BQR) method, the 

parameters of the quantile regression model are estimated 

using Bayesian inference. Prior knowledge may be included, 

complicated models and hierarchical structures can be 

handled, and the estimates’ uncertainty can be quantified 

using BQR, [7]. 

Variational inference (VI) minimizes the Kullback-Leibler 

divergence and approximates the posterior distribution by a 

more straightforward distribution. Compared to Markov 

Chain Monte Carlo (MCMC), VI can offer quicker and more 

scalable inference, albeit at the cost of some accuracy and 

dependability. The VI for Bayesian Quantile Regression 

(BQR) was created by [14] using a combination of normal 

distributions and by [12] using a normal approximation. 

Choosing an appropriate likelihood function for the 

quantile regression model is one of the primary issues of BQR. 

The most popular option is the asymmetric Laplace (AL) 

distribution, which has a density function corresponding to the 

frequentist QR’s negative check function, [4]. The location 

parameter, which defines the conditional quantile, and the 

scale parameter, which regulates the errors’ dispersion, are the 

two parameters that make up the AL distribution. The AL 

distribution may be implemented using Markov chain Monte 

Carlo (MCMC) techniques for BQR because it can be 

represented as a scale mixture of normal distributions with 

exponential mixing weights. 

Distributed computing, divides the data into smaller 

subgroups and does computations in parallel or sequentially 

on each portion. Distributed computing may make use of the 

parallelism of current technology while lowering memory and 

transmission expenses. [13] suggested distributed computing 

for Bayesian Quantile Regression (BQR) utilizing consensus 

Monte Carlo algorithms and divide-and-conquer tactics, 

respectively. 

The regularization or shrinking of the parameters in sparse 

modeling is done to accomplish variable selection and 

dimension reduction. By avoiding overfitting and 

multicollinearity issues, sparse modeling can improve the 

interpretability and predictive accuracy of Bayesian Quantile 

Regression (BQR). Studies on sparse modeling for BQR 

include [9], which utilized an adaptable Lasso prior, [3], 

which employed a horseshoe prior. 

BQR has been used in several disciplines, including 

engineering, finance, ecology, and biostatistics. Several 

instances are: 

In an economic growth study, the causes of economic 

growth at various income quantiles were examined using 

Bayesian Quantile Regression (BQR). According to BQR, 

Ordinary Least Squares (OLS) regression failed to account for 

the diverse impacts of explanatory factors on various income 

distribution segments. This application was presented by [1], 

2012, who used cross- country data from 1960 to 2000. 

Bayesian Quantile Regression (BQR) has been utilized in 

ecological niche modeling to simulate the link between 

species occurrence and environmental factors across various 

quantiles of occurrence probability. BQR allowed for the 

evaluation of the uncertainty and variability of species 

responses and offered a more flexible and comprehensive 

description of species-environment interactions than logistic 

regression. This use was demonstrated by [6], who employed 

data from 226 bird species in North America. 

2. Methods 

2.1. Data Source 

The performance of BQR and Classical quantiles in 

determining stroke risk in Kenya is compared in the study. 

The research employed data from the 2015 Kenya Stepwise 

Survey for Non-Communicable Diseases Risk Factors, a 

nationally representative survey of Kenyan households. The 

study was then repeated using a random simulation of the data 

set to compare the outcomes and efficiency. The study was 

then repeated using a random simulation of the data set to 

compare the outcomes and efficiency. Age, sex, hypertension, 

diabetes, smoking, alcohol use, and physical activity are some 

examples of possible risk factors for stroke that may be 

identified using the information. 

2.2. Classical Binary Quantiles 

The link between a response variable and one or more 

explanatory factors is described using quantiles in the classical 

quantiles model [15]. Quantiles, like the median (the 50th 

percentile) or the quartiles (the 25th and 75th percentiles), are 

points that split a distribution into equal portions. The 

conditional quantile of the response variable given the 

explanatory factors is assumed by the classical quantiles 

model to be a linear function of the explanatory variables. For 

the τ-th quantile, the classical quantile regression model is: 

����|�� = 	
��� + 	
����
 +⋯+ 	������ 

The classical binary quantile regression estimator is 

established by minimizing the sum of the check function over 

the data set. 

	��� = argmin
�∈ℝ�

∑ ���
��
 ��� − !�"	�  

Under some regularity limitations such as the rank and 

identification conditions, this estimator is consistent and 

asymptotically regular, [10]. A prior distribution is the 
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Laplace distribution, which has a density function given by; 

#�	� = 

$% exp )−

|�|
% *  

Given b > 0 is a scale parameter. This prior distribution 

induces sparsity in the estimation as it penalizes large values. 

The posterior distribution (y, x) of the given data is 

proportional to the product of the likelihood function and the 

prior distribution 

#�	|+, !� ∝ .�+|!, 	� ∗ #�	� 
L(y|x, β) is the likelihood function of y given x. For the 

binary data, the likelihood function can be written as; 

.�+|!, 	� = ∏ 1�
��
 �!�"	�23 ∗ )1 − 1�!�"	�*


523
  

The explanatory variables are βX = (X1, X2….. Xp), the 

response variable is Y, and the QR coefficients are β0(τ),..., 

βp(τ). According to the model, many sets of coefficients 

reflect how the explanatory variables influence the τ-th 

quantile of the response variable for each value of τ. 

By reducing the total weighted absolute errors between the 

response variable’s observed and projected values, the 

classical quantile regression model may be computed. The 

weights are determined by the value of tau and by whether the 

mistake is positive or negative. The desired outcome to be 

minimized is 

∑ ���
��
 )+� − !�"	���*  

Where yi is the observed value of Y for observation i, xi is 

the vector of explanatory variables for observation i, β(τ) is the 

vector of quantile regression coefficients for quantile τ, and ρτ 

(u) is the check function. 

2.3. Bayesian Binary Quantiles 

According to [2], when estimating the quantile regression 

coefficients using Bayesian inference, Bayesian quantile 

regression is a methodology that takes into account previous 

knowledge and uncertainty. Assume that Y is the response 

variable, and that X is a matrix of predictor variables, that β is 

a vector of regression coefficients, and that ϵ is the error term. 

The following is the representation of the conditional quantile 

regression function at the τ-th quantile of Z: 

��7� = 8	��� 
Where βτ is the vector of regression coefficients at the τ-th 

quantile. In Bayesian Quantile Regression, we place a prior 

distribution on βτ and ϵ and estimate the posterior distribution 

ofβτ and ϵ given the data. The general form of a Bayesian 

quantile regression model for the τ-th quantile is: 

���7� = 	
��� + 	
���8
 +⋯+ 	����8� 

Where Y is the response variable, X = (X1,…., Xp) are the 

explanatory variables, and β0(τ ),..., βp(τ ) are the quantile 

regression coefficients that depend on τ. The model implies 

that for each value of τ, there is a different set of coefficients 

that describe how the explanatory variables affect the τ -th 

quantile of the response variable. Given is the basic Bayesian 

binary response model: 

7∗ = 8	��� + 9 
9 ∼ �.;�<, =, �� 

> = ?1 : 7∗ > 0
0 : 7∗ ≤ 0 

Priors: 	��� ∼ D�	���
, E
� 
where Z is the binary response variable determined by the 

latent variable y∗, X is a n× p matrix of predictor variables, 

β(τ ) is n× 1 vector of unknown regression parameters for 

specific quantile and ϵ is a vector of random error terms, β(τ )0 

is the vector of prior means and Σ0 is the prior covariance 

matrix. The posterior distribution that results from identifying 

the quantile of interest tau and integrating the priors into the 

model components is given as; 

�	���|7∗, !, �� ∝ FG	���H∏ ALD�
��
 �7�∗|!�"	���, ��  

The asymmetric Laplace distribution (ALD), whose density 

function is defined by, is a popular basis for a likelihood 

function used in Bayesian quantile regression, [17]: 

#�+|<, =, �� = ��1 − �� 
I exp )−��
25J
I *  

Where µ is the location parameter, σ is the scale parameter, 

τ is the skewness parameter, and ρτ (u) is the check function. 

3. Results 

3.1. Feature Selection 

When it comes to data reduction or lowering the size of the 

coefficients, the regression model known as the Least 

Absolute Shrinkage and Selection Operator (Lasso) is a 

valuable tool. By using it, some of the coefficients are set to 

zero, essentially conducting feature selection and bringing 

down the model’s complexity. Even in situations when there 

are exponentially more irrelevant features than in the training 

samples, the L1 regularization is still successful. The penalty 

indicates a trait that predicts sparse estimations of the 

parameter vector. To comprehend shrinkage, we describe it as 

an instance in which data values are drawn inward, often 

toward the mean. 

The absolute value of the coefficients, multiplied by a 

user-defined parameter (λ), is the repercussions term in Lasso 

regression. The parameter’s value influences how harsh the 

penalty is; higher values result in a larger shrinking of the 

coefficients, [16]. 

To prevent over-fitting in the model, Lasso as a regularized 

ML model imposes a penalty on the magnitude of the 

regression coefficients. It functions by including a penalty 

term in the function and attempts to reduce coefficients to zero, 

aiding in the removal of irrelevant predictors from a model, 

[5]. The best-tune λ in this instance was discovered to be 
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0.01277063, i.e., the model with this value of λ has the 

optimum complexity-accuracy proportion. With this value of 

λ, certain characteristics were chosen as important to the 

model and others were eliminated. 

Displayed below are the features which were of importance 

and those which were discarded. 

Table 1. Variable importance. 

Variable Coefficients 

(Intercept) 0.53535 

sex -0.00197 

age . 

hypertension 0.06273 

heart_disease 0.08426 

ever_married 0.07518 

bmi 0.02391 

Residence_type . 

avg_glucose_level 0.07749 

3.2. Classical Quantiles 

The R output shows the results of a quantile regression 

model with a classical quantile level of 0.75, which means 

that the model estimates the conditional 75th percentile of the 

response variable (stroke) given the predictor variables (sex, 

hypertension, heart, married, glucose, BMI). The output 

below shows the coefficients of the model and their lower 

and upper confidence bounds. 

The intercept term is the constant term in the model, 

representing the 75th percentile of stroke when all the 

predictors are zero. The coefficient for the intercept is 

-1.85262, which means that the 75th percentile of stroke is 

-1.85262 units when all the predictors are zero. The lower 

and upper confidence bounds for this coefficient are -5.3925 

and 0.5042, respectively, which means that we are 95% 

confident that the true value of the coefficient lies in this 

interval. 

Table 2. Classical Quantiles at 0.5. 

Variable Bayes Estimate Lower C.I Upper C.I 

(Intercept) -0.24325 -5.35497 -1.13640 

Variable Bayes Estimate Lower C.I Upper C.I 

Sex -0.01955 -2.08729 -0.43319 

Hypertension 0.50241 0.12596 4.58932 

Heart-att 0.44869 0.07435 3.54558 

Marital-st 0.05680 0.2922 5.11172 

Glucose-lvl 0.00349 0.00294 0.04575 

BMI -0.00034 -0.07358 0.00371 

Table 3. Classical Quantiles at 0.75. 

Variable Lower C.I Upper C.I 

(Intercept) -1.85262 -5.3925 

Sex -1.35197 -2.7753 

Hypertension 4.27658 2.20058 

Heart-att 2.08125 0.00594 

Marital-st 3.72934 1.7207 

Glucose-lvl 0.02315 0.00856 

BMI -0.02144 -0.0889 

3.3. Bayesian Quantiles 

The results show the posterior estimates of the coefficients 

and their 95% credible intervals for a Bayesian quantile 

regression model with a quantile level of 0.75, which means 

that the model estimates the conditional 75th percentile of the 

response variable (stroke prediction) given the predictor 

variables (sex, hypertension, heart, marital status, glucose, 

BMI). The model is based on the asymmetric Laplace 

distribution, which is a flexible and robust distribution for 

modeling quantiles. 

The intercept term is the constant term in the model, 

representing the 75th percentile of stroke prediction when all 

the predictors are zero. However, this term may not have a 

meaningful interpretation in this context, since some of the 

predictors (sex and marital status) are categorical variables 

that cannot take zero values. The posterior mean for the 

intercept is -2.09586, which means that the 75th percentile of 

stroke prediction is -2.09586 units when all the predictors are 

zero. The lower and upper bounds for this coefficient are 

-4.39948 and 0.1042, respectively, which means that there is a 

95% probability that the true value of the coefficient lies in 

this interval. 

Table 4. Bayesian Quantiles at 0.5 and 0.75. 

Variable Bayes Estimate Lower C.I Upper C.I Variable Lower C.I Upper C.I 

(Intercept) -2.6457 -4.39114 -1.0036 (Intercept) -2.09586 -4.39948 

Sex -0.9640 -1.55514 -0.3823 Sex -1.12447 -1.95043 

Hypertension 2.1893 1.23147 3.2691 Hypertension 3.51141 1.90967 

Heart-att 0.9378 -0.16264 2.1309 Heart-att 1.66338 -0.07663 

Marital-st 2.2443 1.15481 3.5106 Marital-st 2.69188 1.45101 

Glucose-lvl 0.0117 0.00538 0.0181 Glucose-lvl 0.01780 0.00851 

BMI -0.0129 -0.06130 0.0340 BMI -0.00806 -0.07738 

 

3.4. Comparative Analysis 

Based on the table, we can see that the Bayesian model has 

smaller widths than the classical model for all the coefficients, 

which means that the Bayesian model is more precise and 

certain than the classical model. This may be because the 

Bayesian model incorporates prior information and produces 

posterior distributions that are more informative and robust than 

the classical model, which relies on asymptotic approximations 

and produces point estimates and confidence intervals that are 

more sensitive to outliers and violations of assumptions. 

Therefore, based on the widths of the intervals, we can conclude 

that the Bayesian model is a better model than the classical 

model for stroke prediction at all the quantile levels. 
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Table 5. Width difference at 0.5 and 0.75 quantiles levels. 

Variable Classical Bayesian Variable Classical Bayesian 

(Intercept) 5.9040 4.5037 (Intercept) 4.3187 3.3875 

Sex 2.6681 1.6432 Sex 1.6541 1.1723 

Hypertension 4.6283 3.5192 Hypertension 4.4634 2.0376 

Heart-att 4.7254 3.8083 Heart-att 3.4712 2.2935 

Marital-st 4.5186 2.5883 Marital-st 4.8195 2.3557 

Glucose-lvl 0.0400 0.0201 Glucose-lvl 0.0428 0.0127 

BMI 0.1803 0.1388 BMI 0.0773 1.1946 

 

3.5. Tests of Convergence 

After a certain number of iterations, a test of convergence 

may be utilized to determine if the Bayesian quantile 

regression model has arrived at a stable posterior distribution. 

Using the Gelman-Rubin diagnostic, which evaluates the 

variance within and across the model’s multiple chains, is a 

typical technique for determining if convergence has occurred. 

For each quantile parameter, the G-R diagnostic outputs a 

potential scale reduction factor (PSRF), which expresses how 

much the chains may contract if they were run infinitely, [8]. 

If the PSRF is near 1, the chains have converged to the same 

posterior distribution, while a PSRF larger than 1 indicates 

that the chains have not converged and need more iterations. 

Upon executing iterations, it was discovered that the 

shrinkage levels were near to one across different quantile 

levels, demonstrating that the traces of the variables were 

converging as shown below in the marital status sample. 

 

Figure 1. Marital Status Convergence at different quantiles. 

4. Conclusion 

The findings indicate that for stroke prediction in Kenya at 

various quantiles, the Bayesian quantile regression model 

performs better than the classical quantile regression model. 

Compared to the classical model, the Bayesian model offers 

more substantial fit, performance, precision, and interpretation. 

It may also offer more flexible and useful inferences 

concerning the effects of various predictors on stroke risk at 

various quantile levels. The findings additionally suggest that 

stroke risk factors at all quantiles include hypertension, heart 

disease, diabetes, and BMI, whereas the quantile level effects 

of sex and marital status differ. According to the findings, the 

Bayesian quantile regression model can be a valuable tool in 

assessing stroke risk and controlling it. 

Some recommendations based on the above results are: 

To use the Bayesian quantile regression model rather than 

the classical one. 

Advise high-risk individuals to seek medical attention and 

adopt healthy lifestyle choices to reduce their risk of stroke 

and enhance their quality of life. 

Investigate and contrast several approaches and priors for 

Bayesian quantile regression, and provide findings clearly 

and thoroughly. 
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